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Review

Introduction

The size and complexity of the neocortex increase dra-
matically in the hierarchy of mammals. The number of 
neocortical neurons increases from about 10 million in 
mouse to 30 million in rat, 300 million in cat, and more 
than 20,000 million in the human brain (DeFelipe 2011; 
Herculano-Houzel 2009; Herculano-Houzel and others 
2006). The connectivity becomes richer too. In humans, a 
prefrontal cortex pyramidal neuron has about four times 
more spines on the basal dendrites than a pyramidal neu-
ron in a mouse (DeFelipe 2011). The exploding complex-
ity and associated possibilities for processing allow 
neocortical circuits to mediate increasingly complex 
behaviors, for example, by expanding the range of factors 
that can influence decision making.

The expansion of the complexity of cortical structure 
and function is subject to a number of interrelated con-
straints. These constraints are imposed by available 
energy, structural elements and space, but also by func-
tional requirements, such as maintenance of the balances 
between excitation and inhibition or synaptic potentiation 

and depression, which are necessary for stable operation 
of the brain. One further important constraint on process-
ing is time. Decision making processes in large brains 
must be accomplished within the same time limits as in 
smaller brains. These time constraints are set externally, 
by the time course of environmental events relevant for 
the organisms’ survival. How do mammals make use of 
the increased number of neurons and connections, medi-
ating their broadened behavioral repertoire, without com-
promising the speed of decision-making and behavioral 
reactions? Or, how much of the brain power can be used 
for a certain task, within a reasonable time? How many 
ensembles can be involved in processing, and different 
factors taken into account, while making a decision?
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Abstract
The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. 
How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making 
decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of 
computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input 
and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements 
for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action 
potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. 
Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode 
high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This 
implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than 
the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on 
a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity 
in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal 
constraints.
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There are two general strategies for making use of the 
increased number of neurons and connections while 
keeping up the processing speed: increasing the speed of 
each iteration, and engaging neuronal ensembles in paral-
lel processing. The speed of one iteration (or one round of 
processing) is determined by the response time: an inter-
val in which a neuron, or an ensemble of neurons, can 
accomplish one cycle of information processing, from 
receiving the input from the upstream neurons to produc-
ing the output signal and sending it to downstream neu-
rons. Shortening this time would increase processing 
speed. Employment of neuronal ensembles in parallel 
processing necessitates temporal coordination of their 
activity. To ensure effective integration of results of pro-
cessing in different neuronal ensembles, they should 
operate on the same time scale, and be able to generate 
precisely timed spikes. This latter requirement connects 
the two strategies for faster processing, because the abil-
ity to generate precisely timed spikes is intrinsically 
related to the response time.

Components of Processing Time in a 
Neuron

Processing in neuronal networks can be considered as 
consisting of individual cycles (in this review, cycles, 
iterations, or rounds of processing are used as synonyms). 
Stages of a processing cycle can be illustrated by consid-
ering a pair of synaptically connected neurons isolated 
from a multilayer network (Fig. 1). The processing cycle 
begins with generation of an action potential (AP) in the 
presynaptic neuron(s) from layer A, and includes the fol-
lowing stages: (1) Propagation of the presynaptic AP 
down the axon to the presynaptic terminal. (2) Synaptic 
transmission, generation of postsynaptic current and 
postsynaptic potential, and dendritic integration, ulti-
mately leading to a postsynaptic potential as recorded in 
the soma. (3) Change of the membrane potential at the 
spike initiation zone in the axon initial segment, leading, 
or not, to (4) generation of a postsynaptic spike. Firing of 
layer B neurons encodes the ultimate results of computa-
tions performed by the neurons of that layer in this pro-
cessing cycle. This output signal is communicated to the 
next level neurons thus starting the next round of 
processing.

Latencies of excitatory postsynaptic potentials (EPSPs) 
at monosynaptic connections between neocortical neurons 
measured in slices in vitro are short, in the range of 1 to 2 
ms (e.g., Feldmeyer and others 2006; Frick and others 
2008; Hardingham and Larkman 1998; Mason and others 
1991). Latencies of the similar range (1-2 ms) were mea-
sured in cortical neurons in response to electric stimulation 
of thalamic afferents in vivo (Ferster and Lindstrom 1983). 
These latencies include time necessary for propagation of 

action potential down the axon to presynaptic terminals, 
synaptic transmission, and dendritic integration. Thus, 
changes in activity of presynaptic neurons are translated 
into membrane potential changes of the postsynaptic cell 
(stages 1 and 2 in Fig. 1) within 1 to 2 ms.

How fast can the spike generation mechanism of corti-
cal neurons translate these changes of the membrane 
potential into changes of postsynaptic firing? A hint that 
this process is very fast comes from results of cross- 
correlation analysis of spike trains of simultaneously 
recorded neurons in vivo. In cortico-cortical connections, 

Figure 1. Components of processing time in a neuron. One 
cycle (or one round) of information processing by a neuron, 
or by a layer of neurons in multilayer network, starts with 
the generation of an action potential (AP) in presynaptic 
neurons. Further stages of this cycle include (1) propagation 
of presynaptic AP down the axon to presynaptic terminal; 
(2) synaptic transmission, generation of postsynaptic current 
and postsynaptic potential (PSP), and dendritic integration, 
ultimately leading to a PSP as recorded in the soma; and (3) 
change of the membrane potential at the spike initiation zone 
of the axon initial segment, leading (or not) to (4) generation 
of a postsynaptic spike. Generation of an action potential in 
the postsynaptic neuron concludes the cycle. Note that in 
the context of present review “layer” has functional rather 
than morphological meaning, it refers to a population of 
neurons involved in one iteration, and thus can be applied to 
processing in networks with both feedforward and feedback 
connectivity.
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spiking of a presynaptic neuron can affect the probability 
of firing of postsynaptic neuron within few milliseconds: 
sharp peaks, which are characteristic of direct synaptic 
connections, are typically shifted by only 2 to 3 ms from 
the crosscorrelogram origin (e.g., Dickson and Gerstein 
1974; Matsumura and others 1996; Michalski and others 
1983; Nowak and others 1995). Also in specific thalamo-
cortical pathways transmission is fast. In somatosensory 
and visual systems, spikes of cortical neurons follow 
spikes of thalamic neurons with latency of 1.5 to 3 ms 
(Bereshpolova and others 2011; Reid and Alonso 1995; 
Swadlow and Gusev 2002; Usrey and others 2000). Thus, 
latencies of monosynaptic peaks in cross-correlograms, 
which provide a measure of the duration of the whole 
cycle (Fig. 1, stages 1-4), are only marginally longer than 
latencies of monosynaptic EPSPs recorded in the soma 
(Fig. 1, stages 1 and 2). This suggests that transformation 
of membrane potential changes into spike responses (Fig. 
1, stages 3 and 4) occurs rapidly, on a time scale of mil-
liseconds. Indeed, a unique study employing in vivo 
intracellular recording of postsynaptic potentials evoked 
in spinal motoneurons by electric stimulation, demon-
strated that spike response of firing neuron (peak in a 
peristimulus time histogram [PSTH]) begins in less than 
0.5 ms (0.48 ms on average) after the EPSP onset (Fetz 
and Gustafsson 1983). These results from cat motoneu-
rons support the conclusion that neurons can transform 
changes of the membrane potential into changes of firing 
rate very quickly, on a millisecond time scale.

How to Make Neuronal Responses 
Fast?

One intuitive way to make spike responses faster is to 
increase the input strength. Indeed, there are documented 
examples of strong synaptic connections in the neocor-
tex, such as some connections between pyramidal neu-
rons (Thomson 1997; Thomson and others 1993), 
all-or-none connections to layer 2/3 and layer 4 neurons 
in the visual and auditory cortex (Lee and others 2012; 
Stratford and others 1996; Volgushev and others 1995), or 
some of the synapses formed by pyramids on fast-spiking 
interneurons (e.g., Galarreta and Hestrin 2001). However, 
strong individual connections that evoke large EPSPs are 
rare exceptions. EPSP amplitudes at a majority of cortical 
synapses are well below 1 mV (Feldmeyer and others 
2006; Frick and others 2008; Hardingham and Larkman 
1998; Mason and others 1991, Song and others 2005; 
Thomson 1997). With small amplitudes of individual 
connections, higher input strength could be achieved by 
increasing the number of activated presynaptic neurons 
or by more precise synchronization of presynaptic spikes 
(e.g., Alonso and others 1996; Neuenschwander and 
Singer 1996; Usrey and others 2000).

Figure 2A illustrates spike responses of a pyramidal 
neuron from layer 2/3 in a slice of visual cortex in vitro 
evoked by somatic injection of an artificial excitatory 
postsynaptic current (aEPSC) of increasing amplitude. To 
evoke action potentials by aEPSCs of reasonable ampli-
tude the neuron was kept near threshold, around –55 mV, 
by injection of depolarizing DC current. At threshold 
intensity of stimulation (in this cell a 180-pA aEPSC, 
which produced aEPSPs of 7-8 mV amplitude), latency 
of detectable spike responses was very long, 17 ms. Spike 
response latency decreased sharply when amplitude of 
aEPSCs was increased to 240 pA and then to 300 pA. 
This strongest tested intensity produced EPSPs of 12-14 
mV and evoked spikes with high reliability, in 86% of 
trials. However, the latency of spike responses did not 
decrease below ~5 ms (Fig. 2A2 and blue diamond sym-
bols in Fig. 2C). These values are clearly longer than 
latencies of monosynaptic peaks in the cross-correlo-
grams, discussed above.

Increasing the strength of individual connections as a 
common strategy for achieving fast spike responses has 
several further drawbacks. It promotes fixed-route propa-
gation of signals through neuronal networks, thus limit-
ing the flexibility of processing. Presence of a substantial 
number of very strong connections in networks with plas-
tic synapses might make them prone to runaway dynam-
ics (Miller and MacKay 1994; Oja 1982; von der 
Malsburg 1973). Finally, experimental evidence from 
both in vitro and in vivo experiments (Feldmeyer and oth-
ers 2006; Frick and others 2008; Hardingham and 
Larkman 1998; Mason and others 1991; Song and others 
2005; Thomson 1997) shows that in the neocortex strong 
synaptic connections are an exception rather than a rule. 
Thus, simple increase of input amplitude is neither a typi-
cal strategy for the neocortex nor is it sufficient for 
achieving fast spike responses.

Because in individual neuron the transmission of mod-
erate-amplitude PSPs into spikes is not a 1:1 process, 
spiking needs to be averaged over a number of stimulus 
presentations to reveal a response, as in Figure 2A. The 
same effect can be achieved by using the activity of a 
population of neurons as readout of response to a stimu-
lus (inset in Fig. 2B; see also Box 1). The use of popula-
tion activity and averaging allows for some “noise.” The 
effect of noise originating from uncorrelated synaptic 
activity and producing irregular spiking is effectively 
reduced by averaging, thus allowing to recover signal-to-
noise ratio in the output activity of the neuronal popula-
tion. Remarkably, addition of background activity 
enhances the sensitivity of population firing to small 
inputs and leads to a dramatic increase of the speed of 
spike responses. The “speeding-up” of spike responses by 
noise occurs over a broad range of amplitudes of the sig-
nal and the noise, and a broad range of signal-to-noise 
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ratios. Figure 2B illustrates example responses of spiking 
neuronal population to injection of aEPSCs of different 
amplitudes (varying ~10-fold), immersed in fluctuating 
background noise with amplitude differed by a factor of 
2. Responses of spiking neuronal ensembles are faster 
than in no-noise conditions both for aEPSCs of compa-
rable amplitudes (Fig. 2C, green triangle vs. blue dia-
mond symbols), as well as for aEPSCs of much smaller 

amplitudes, which would remain subthreshold for neu-
rons that do not spike spontaneously (Fig. 2C, red square 
vs. blue diamond symbols).

Intuitively, the ability of a population of spiking neu-
rons to rapidly detect even small input perturbations can 
be understood as following. In the spiking population, at 
each time point there are some neurons that are very close 
to the firing threshold. If no stimulus is presented within 

Figure 2. How to make neuronal spike responses fast? (A1) Responses of a neuron to injection of a sequence of excitatory 
postsynaptic current (EPSC)–shaped depolarizing currents (artificial EPSCs, aEPSCs). The neuron was kept close to the threshold 
(around −55 mV) using depolarizing direct current. Amplitude of the artificial EPSCs was changed from subthreshold to just-
threshold (top) to suprathreshold (bottom). (A2) Peristimulus time histograms (PSTHs) of spike responses superimposed on 
aEPSCs, with vertical dashed line showing aEPSC onset. Note that even at high suprathreshold intensity, when spikes were 
evoked with P = .86, spike response starts ~5 ms after the onset of aEPSC. (B1) Responses of the same neuron as in A to aEPSCs 
immersed in fluctuating noise. Fluctuating current, mimicking background activity in neuronal networks in vivo, induces firing of 
the neuron at ~5 Hz. Signal-to-noise ratio was modified in these experiments by changing either the amplitude of the fluctuating 
noise, or the amplitude of aEPSC, as illustrated. (B2) PSTHs of spike responses, data from experiments illustrated in B1. 
Background firing rate of ~5 Hz was subtracted from PSTHs. The scale for aEPSCs is the same in A and B. Note that changes of 
the firing rate of spontaneously active neurons in response to small amplitude aEPSCs in B are much faster than spike responses 
of near-threshold but silent neurons evoked by large aEPSCs in A. (C) Latency of spike response plotted against aEPSC amplitude, 
data from symbol-coded experiments illustrated in A and B, with more different EPSC amplitudes. Latency was defined as time at 
which 20 additional spikes relative to pre-stimulus level were generated. Note that a population of spiking neurons responds to 
aEPSCs of similar amplitudes with shorter latencies than silent neurons (green triangle vs. blue diamond symbols), and that even 
very small aEPSCs evoke short-latency spike responses in a population of spiking neurons (red square symbols) (Ilin, Stevenson, 
Volgushev, unpublished data).
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the next few moments, background noise fluctuations 
would drive few of these neurons over the threshold to 
generate an action potential, but will bring other neurons 
away from the threshold. When stimulus is added, this 
subpopulation of “super-detectors” responds with spikes 
that originate from two sources. First, a push toward fir-
ing produced by the stimulus leads to action potentials in 
a portion of neurons that would not fire otherwise, but 
generate “additional” spikes because of the stimulus. 
Second, in those neurons that would fire even without 
stimulation, the additional EPSC may rush-up generation 
of an action potential, thus shifting the spike closer to the 
stimulus onset. Total response of the neuronal population 
to an EPSC immersed in background activity would thus 
consist of both additionally generated and shifted spikes 
(Malyshev and others 2013).

In contrast, a silent population does not contain such 
“super-detectors.” In all silent neurons the membrane 
potential is well below the threshold, and input signals have 
to produce substantial depolarization of the membrane 
before it reaches the threshold range. This process is funda-
mentally limited by the time constant of cell membrane, 

hence the latency of spike responses is generally long, and 
has marked dependence on the strength of stimulation.

Thus, populations of spontaneously firing neurons can 
respond fast to small-amplitude inputs, while populations 
of silent neurons respond relatively slow even to high 
amplitude inputs. Notably, responses of spiking popula-
tions are much faster than the membrane time constant of 
individual neurons. Moreover, firing rate of populations of 
spiking neurons is influenced by a broader range of signal 
amplitudes, such that this dynamic range of sensitivity 
includes small amplitudes, typical for cortical synapses. 
The ability of spiking populations to respond to stimuli of 
a broad range of amplitudes with similar, short latencies is 
advantageous for temporal organization of neuronal activ-
ity and parallel processing. It allows integration of signals 
of different amplitudes on the same temporal scale, and 
makes processing tolerant to changes of input amplitude, 
so that plasticity or synchronization would not disrupt 
temporal coordination of activity. Altogether, the decou-
pling (at least partial, see below) of changes of firing prob-
ability from latency may allow qualitatively different 
computations to be performed by neuronal networks.

Box 1. How to study population encoding in slices?
A: A scheme of a three-layer, feed-forward neuronal network, in which one first-layer “source” neuron provides common input to a 
population of “transmitting” neurons in the second-layer, and transmitting neurons converge on a “decoder” neuron in the third layer. These 
neurons and connections are shown in green. The rest of the network is shown in gray.
B: Input to each transmitting neuron of the second layer consists of a common signal from the source, in this example an EPSC produced by 
an action potential in the source neuron, immersed in fluctuating background noise generated by activity of other neurons in the network. 
Each transmitting neuron has individual background noise, because it is produced by activity of a unique set of presynaptic neurons. Population 
firing of the transmitting neurons provides input to the decoder of the third layer.
C: Experimentally, population encoding in B can be mimicked by injecting into a neuron fluctuating current consisting of artificial EPSCs 
immersed in different episodes of fluctuating noise.
Modified from Malyshev and others (2013).
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Figure 3. Rapid detection of small excitatory postsynaptic potentials (EPSCs) in changes of population firing. (A) Responses of 
a neocortical neuron to injection of two episodes of fluctuating noise current (gray traces) with immersed small artificial EPSCs 
(aEPSCs; red). Traces are aligned by aEPSC onset (vertical dashed line). (B) Firing rate changes of a population of spiking neurons 
in response to injection of fluctuating current with immersed aEPSCs (red trace). Data from 11 neurons; total of N = 2959 
repetitions. Bin 1 ms. Dashed horizontal gray line shows averaged firing rate (4.84 imp/s [impulses per second]). (C) Zoom-
in of the response peak, a portion the histogram indicated by gray bar on top of B. Green vertical dashed lines in A-C show 
aEPSC onset. (D) Probability of EPSC detection by a theoretical decoder (Box 2) receiving inputs from populations of N = 300, 
1000, and 3000 transmitting neurons versus time. Results calculated using bootstrapping (circles) and parametrical theoretical 
estimation (diamonds, solid lines; see Malyshev and others 2013 for details). Modified from Malyshev and others (2013).

Ultrafast Responses of Cortical 
Neurons: Experimental Evidence

In the whole brain, in vivo neurons can communicate fast, 
on millisecond time scale. Sharp peaks, characteristic of 
direct synaptic connections, are often shifted by only 1.5 
to 3 ms in cross-correlograms between pairs of neocorti-
cal neurons or in thalamocortical sensory pathways (e.g., 
Bereshpolova and others 2011; Dickson and Gerstein 
1974; Michalski and others 1983; Nowak and others 
1995; Reid and Alonso 1995; Swadlow and Gusev 2002; 
Usrey and others 2000). Di-synaptic transmission from 
retinal ganglion cells to visual cortex neurons in cats 
takes only 4.5 to 9 ms (Kara and Reid 2003). In rabbit 
somatosensory system, peripheral sensory stimuli can 
evoke spikes in cortical neurons with latency <7.5 ms 
(Swadlow and Gusev 2002).

Cortical Neurons Can Respond Fast to Small 
Input Perturbations

In vivo experiments offer advantages of studying encod-
ing in neurons that operate in the natural environment of 

the whole brain and can be tested using natural sensory 
stimuli. Disadvantages of in vivo preparation for quanti-
tative analysis of encoding include poor or absent control 
over essential factors, such as background activity or fir-
ing rate of neurons, and unknown number of neurons and 
connections activated by natural stimulation. In vitro 
experiments, though lacking the realism of the in vivo 
brain, offer the advantages of stability of recording and 
tight control over input stimuli and other experimental 
conditions. The in vitro approach was initially used for 
validation of cross-correlation techniques (Moore and 
others 1970) and then employed to study spike responses 
evoked by injection of defined input current (Carandini 
and others 1996; Mainen and Sejnowski 1995; Reyes 
2003; Rodriguez-Molina and others 2007; Volgushev and 
others 1998) or by presynaptic spikes in monosynapti-
cally connected pairs of neurons (Galarreta and Hestrin 
2001). This latter study (Galarreta and Hestrin 2001) 
demonstrated that in fast-spiking inhibitory neurons, the 
EPSPs evoked by spikes in presynaptic pyramidal neu-
rons, are transformed into firing rate changes reliably and 
fast, with ~1.7 ms latency from the presynaptic spike to 
the peak in PSTH.
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Extension of these approaches to studies of population 
encoding in vitro was pioneered by (Silberberg and others 
2004). The logic behind the approach of Silberberg and 
colleagues can be illustrated using an example of a three 
layer feed-forward neuronal network (Box 1). Consider a 
population of “transmitting” neurons from the second 
layer. Each neuron of this population receives a unique 
pattern of inputs from neurons of the first layer, which 
results in a unique, different from other neurons pattern 
of background activity (“noise”). All neurons of the pop-
ulation also receive an input from a common fiber, which 
introduces a common element to their activity. In experi-
ments, this situation is imitated by injecting into a neuron 
a mixture of a unique realization of fluctuating noise cur-
rent, which mimics background activity, and a common 
signal, such as an artificial EPSC, current step or sine-
wave modulated signal, which is exactly the same in all 
neurons and mimics the effect of the shared input (Box 1, 
panel B). Recording responses to injection of these cur-
rents in all neurons of the transmitting population simul-
taneously is mathematically equivalent to successive 
recording of responses of several cells to the signal 
immersed in different realizations of the fluctuating noise 
(Box 1, panel C). Averaging the spike responses provides 

an estimate of the population firing, whereby the number 
of repeated injections is equivalent to the number of neu-
rons in the population (Silberberg et al., 2004).

Figure 3 illustrates results of an experiment on popula-
tion encoding of small artificial EPSCs. Individual 
responses to injection of aEPSCs immersed in different 
realizations of fluctuating current do not show an obvious 
relation between the aEPSCs and postsynaptic spikes 
(Fig. 3A). However, the PSTH constructed from N = 
2959 responses reveals a clear peak of the population fir-
ing at the onset of aEPSC (Fig. 3B). Fast changes of pop-
ulation firing rate in response to injection of aEPSCs are 
consistent with prior results on rapid spike responses to 
step-changes of the input (Ilin and others 2013; Silberberg 
and others 2004; Tchumatchenko and others 2011). 
Zooming in on the time scale shows that the time-course 
of the PSTH peak accurately reproduces the shape of the 
aEPSC (Fig. 3C). This suggests that population firing rate 
not only can change rapidly in response to input perturba-
tion but also dynamically follow the time-course of input 
amplitude changes.

A quantitative measure of encoding of input signals 
into changes of population firing rate—detection proba-
bility—can be obtained using a theoretical decoder, 

Box 2. Measuring spike encoding: Detection of changes of firing rate of neuronal population by a theoretical decoder.
A: A theoretical decoder receives inputs from neurons of transmitting population. Histogram shows changes of the population firing rate of 
the transmitting neurons in response to a depolarizing step immersed in fluctuating current. Bin size 1 ms. Distributions of spike count in 
1-ms bins during the periods 120 ms before the step (blue) and 40 ms after the step onset (red) are shown to the right of the histogram.
B: Probability of detection of a change in firing rate of a population of N neurons within time interval T was calculated using a theoretical 
decoder which reports a change in the input if the population firing rate exceeds the 95th quantile of the presignal distribution. Using 
bootstrapping, we composed 100 trial sets of N randomly selected response sweeps. From these 100 sets we calculated the distributions of 
the number of spikes during time interval T before the step onset (top), and during time interval T after the step onset (middle). Next, we 
determined the 95th quantile of the prestep distribution (blue portion of the distribution, dashed vertical line). The portion of the poststep 
distribution that lies above the 95th quantile of the prestep distribution (red in the middle and bottom plots) provides an estimate of the 
probability with which the change in firing rate is detected.
C: Probability of step detection versus time (from T=0.4 ms to T=10 ms) for populations of N = 100, 300, 500, 1000, and 3000 neurons.
Modified from Malyshev and others (2013) and Tchumatchenko and others (2011).
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which receives inputs from neurons of the transmitting 
population (Box 2). The decoder reports a change in the 
input (detects a signal) if the population firing rate 
exceeds the 95% quantile of the distribution of firing 
rates before the signal onset (Box 2). Figure 3D shows 
detection probability calculated using the theoretical 
decoder on data from Figure 3A-C. The detection proba-
bility depends on time and on the number of neurons in 
the transmitting population. When activity of large num-
ber of neurons is available (N = 1000 and N = 3000), 
aEPSCs can be detected very quickly, within 2 to 2.5 ms 
from their onset. After decreasing the size of the transmit-
ting population down to N = 300, the time necessary for 
detection increases, though it still remains within few 
milliseconds. Thus, small perturbations of the input, such 
as aEPSCs or steps, lead to rapid changes of population 
firing rate. Time necessary for detection of these signals 
decreases with the increasing size of the population.

Cortical Neurons Can Phase-Lock Their Firing 
to High-Frequency Signals

So far we have considered responses of neuronal popula-
tions in the time domain, whereby response speed is 
assessed by measuring response latency and calculation 
of detection time. A more general characterization of 
encoding is provided by measuring the frequency 
response, or transfer function, which describes how dif-
ferent frequency components of signals are translated 
into changes of firing rate of neuronal populations. 
Consider a population of neurons, each receiving indi-
vidual fluctuating noise and a common sine-wave signal 
immersed in it. If neurons are able to phase-lock their fir-
ing to the signal, information about the signal will be pre-
served in population firing, and thus the signal will be 
encoded (Box 3). Measuring the ability of neurons to 
phase-lock their firing to signals of different frequencies, 
the transfer function, characterizes the encoding abilities 
of neuronal population in the frequency domain.

Transfer functions measured in layer 2/3 and layer 5 
pyramidal neurons in slices from rat neocortex are illus-
trated in Figure 4A. Neurons of both types can phase-lock 
their firing to high frequencies: layer 2/3 pyramids up to 
~300 to 400 Hz, and layer 5 pyramids to even higher fre-
quencies of up to ~600 to 700 Hz. These results agree 
with a number of reports on experimental measurements 
of frequency response functions in pyramidal neurons 
from different areas of the neocortex (Boucsein and oth-
ers 2009; Broicher and others 2012; Higgs and Spain 
2009; 2011; Ilin and others 2013; Kondgen and others 
2008; Tchumatchenko and others 2011). In a linear sys-
tem, characteristics of the response in time domain and 
frequency domain are related. The response time of a 

simple low-pass filter is related to the cutoff frequency fc 
of transfer function as 1/(2πfc). For cutoff frequencies of 
200 Hz and above this implies a response time scale <1 
ms. Figure 4B illustrates responses to an input step of 
four idealized systems with different high-frequency cut-
off fc of their transfer functions. For transfer functions 
measured in cortical neurons, with fc values >200 Hz, 
responses to step changes of the input are fast, but with 
decreasing fc they become progressively slower.

To summarize, measurements made both in the time 
domain and the frequency domain indicate that ensembles 
of cortical neurons can communicate on a millisecond 
time scale and thus support fast processing. Cortical neu-
rons can phase-lock their firing to high-frequency compo-
nents of the input up to ~300 to 700 Hz, and respond 
quickly, on a millisecond time-scale, to rapid changes of 
the input. Considering the theoretical decoder (Box 2) as a 
“reader” of ensemble activity (Buzsaki 2010), the length 
of a time unit for neuronal computations is short, only ~1 
to 3 ms. The ability of cortical neuronal ensembles to 
accomplish one iteration of processing within 1 to 3 ms 
sets the time clock of the “cortical network CPU” at ~300 
to 1000 Hz. This time scale is several-fold faster than the 
membrane time constant of principal cortical neurons 
(~10-20 ms), which sets a coarse time scale for passive 
dendritic integration of synaptic inputs—an “integration 
cycle” (Buzsaki 2010). Fast communication between neu-
ronal ensembles allows cortical networks to perform mul-
tiple iterations of processing within the duration of one 
membrane time constant. This is a useful feature for pro-
cessing in networks with rich feedback connectivity. It 
allows feedback signals to influence ongoing dendritic 
processing: the simplest recurrent scheme includes only 
two iterations. It is also advantageous for parallel process-
ing. The ability to perform multiple iterations within a 
single integration cycle facilitates coordination of activity 
in parallel streams and timing of their outputs for the final 
integration of results. All in all, fast communication 
between individual cortical ensembles allows the employ-
ment of multiple ensembles in complex, multiple-step 
processing within a perceptual time-unit, which, depend-
ing on sensory modality and complexity of the current 
task, takes ~50 to 100 ms and upward.

Ultrafast Neuronal Responses: What 
Are They Good for?

Experimental evidence considered above demonstrated 
that ensembles of spiking neurons are capable of encod-
ing input perturbations into changes of the firing rate very 
fast, on the time scale of milliseconds. Does the brain use 
this high processing speed? And what could these abili-
ties for ultrafast processing be good for?
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It is important to note that ability of neuronal popula-
tions to change their firing rate in response to very fast 
changes of the input (on millisecond scale) does not nec-
essarily imply that we can perceive stimuli which change 
that fast. For instance, even though neurons in the visual 
cortex can phase-lock their firing rate, and thus encode 
frequencies of 300 to 700 Hz, this does not mean we can 
perceive visual stimuli changing at this rate, because any 
cognitive process involves multiple-stage processing in 
multilayer neuronal networks. It does mean, however, 
that cortical neurons can signal changes at their inputs by 

changing their firing very quickly, and thus are able to 
support fast computations and temporal coding with pre-
cisely timed spikes. This feature is vital for a broad range 
of phenomena and processes, such as generation of high 
frequency oscillations, synchrony and precise coordina-
tion of activity, or spike-timing dependent plasticity with 
millisecond-precise windows.

In the cortex, neuronal activity and field potentials 
express oscillations in high-frequency range, such as 
high-gamma (>80 Hz) in the visual cortex (Frien and oth-
ers 2000; Ray and Maunsell 2011), ripples (~200 Hz) in 

Box 3. Measuring spike encoding: Calculation of frequency transfer function of a population of spiking neurons.
A: Current for injection consisting of a sine-wave signal of frequency f immersed in fluctuating noise.
B: Membrane potential response to current injection recorded in a layer 2/3 pyramidal neuron from rat visual cortex slice. Red trace shows 
sine wave signal that was present in the injected current, but at greatly expanded Y-scale. Colored circles show timing of each spike and its 
phase relative to the signal.
C: Calculation of the vector strength r, which characterizes phase-locking of neurons’ firing to sine wave signal of frequency f and thus encoding 
of that frequency. Each spike is represented by a vector of unit length and a phase between 0 and 2π defined as spike time modulo the stimulus 
period. Colored circles show phases of all spike-vectors from B. Sum of these vectors, normalized by the number of spikes, gives a vector r. Its 
length (r = 0.54) characterizes phase-locking of neurons’ firing to the stimulus, and thus encoding of the stimulus frequency f. In the case of ideal 
phase locking, when all spikes were generated at the same phase of the signal, vector r length would be 1. In the case of no phase locking, when 
spikes are generated at random phases of the signal, vector r would converge to 0. To assess the variability of the vector length estimate r we used 
bootstrapping. Each dark blue dot represents a mean vector calculated for random resamplings (N = 200) of 50% of experimentally measured spike 
times. Note that only 10 action potentials (APs) from a short period of stimulus presentation shown in B were used for these calculations, leading to 
high variability of bootstrapping results in this example. For calculation of frequency response functions of neurons, such as results presented in panel 
D, much larger samples of ~300 to ~3000 spikes for each signal frequency per cell were used, thus allowing for reliable statistical analysis.
D: Vector strength r plotted against stimulus frequency provides an estimate of transfer function of neurons (dark blue symbols and line). Data from 
N = 14 neurons. Note that with this method, phase locking can be estimated only for a set of discrete frequencies (dark blue symbols). A complete 
characterization of frequency transfer function is possible with a method suggested by Higgs and Spain (Higgs and Spain 2009; Ilin and others 2013) 
that exploits injection of fluctuating noise containing all encoding-relevant frequencies, and uses frequency-dependent filtering to extract phase-
locking of neuronal responses to specific frequencies. Transfer function measured with the noise injection method for N = 18 neurons is shown in 
gray. Note that the two methods give very similar estimates of the frequency response of cortical neurons.
Modified from Ilin and others (2013).
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the hippocampus (Bragin and others 1999; Csicsvari and 
others 1999; Klausberger and others 2003; Ylinen and 
others 1995) and ultrafast oscillations (>200 Hz) in the 
barrel cortex (Jones and Barth 1999). For an oscillation at 
200 Hz, positive and negative phases of the cycle are only 
2.5-ms long. Because these oscillations have synaptic ori-
gin, alternating excitatory and inhibitory inputs should fit 
exactly into this time frame to produce rapidly alternating 
depolarization and hyperpolarization phases of mem-
brane potential fluctuations. This requires that excitatory 
and inhibitory neurons generate spikes with millisecond 
precision. Presence of high-frequency oscillations in 
brain activity shows that both excitatory and inhibitory 
neurons can support such precision.

High temporal precision of spike generation is also 
crucial for spike-timing dependent plasticity, which rep-
resents a cellular mechanism of learning and memory. 
The width of temporal windows for potentiation, though 
variable for different types of neurons and connections, is 
often in the range of few milliseconds, for example, ~10 
ms in somatosensory and visual cortex (Feldman 2000; 
Froemke and others 2005), and only ~6 to 7 ms in ento-
rhinal cortex (Haas and others 2006; Zhou and others 
2005). Missing this window by just few milliseconds may 
result in failure to induce potentiation or even in 
depression.

In perception, hearing has the highest temporal reso-
lution compared to other senses. Leaving aside tono-
topically organized “labeled line” representation of 
kilohertz-range frequencies, neurons of the auditory 
system can phase lock their firing to frequencies up to 

~1 to 2 kHz in subcortical structures and up to ~100 Hz 
in the primary auditory cortex (Bieser and Muller-
Preuss 1996; Joris and others 2004; Schreiner and Urbas 
1988). Even higher precision, on a sub-millisecond 
scale, is required for estimation of the azimuth of a 
sound source from binaural delays that can be as small 
as 0.1 ms. Although binaural delays are calculated in 
subcortical structures (e.g., Adachi and others 2014; 
Golding and Oertel 2012; Kuba and others 2006), this 
example illustrates that neurons are capable of both, 
generating signals with this exceptional precision and 
processing them.

The visual system has a lower temporal resolution 
of ~20 to 25 ms. For instance, we do not perceive the 
flickering of a computer screen or TV with a refresh 
rate of 40 to 60 Hz. Nevertheless, information about 
higher frequency components of environmental stimuli 
can be present in activity of visual cortex neurons: 
visually evoked potentials in some human observers 
show entrainment to high contrast stimuli up to a 
72-Hz refresh rate (Lyskov and others 1998; Williams 
and others 2004), and significant portion of neurons in 
primary visual cortex of the macaque phase-lock to 
high contrast stimuli presented even at a 100 Hz refresh 
rate (Williams and others 2004). These frequencies are 
well below the cutoff of the frequency transfer func-
tions of cortical neurons (Fig. 4). In fact, cortical neu-
rons are able to phase-lock their firing, and thus 
encode, several-fold higher frequencies. This enables 
neuronal networks of the visual cortex to perform mul-
tiple iterations of processing within each time-unit of a 

Figure 4. Frequency response functions of neuronal populations and response to input steps. (A) Experimentally measured 
frequency response functions of pyramidal neurons from layer 2/3 (red) and layer 5 (blue) in slices from rat visual cortex. Vertical 
bars indicate standard error of the mean (SEM). (B) Relation between high-frequency cutoff (fc) of transfer function and dynamics 
of responses to step-changes of the input. Calculated responses of an idealized system that transfers only frequencies <fc but 
eliminates frequencies >fc. fc = 1000 Hz, 400 Hz, 200 Hz, and 100 Hz, as indicated. Dashed vertical line indicates the onset of 
input step (top black trace). Dashed fragmented lines between A and B are for illustration of the relation between measured 
transfer functions of cortical neurons in A and cutoff frequencies used for calculation of responses in B.
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slower perceptual scale. Fast communication between 
neuronal ensembles may thus allow complex, multi-
stage processing of visual information, while achiev-
ing the remarkable temporal resolution of visual 
perception.

Cognitive tasks requiring interactions between multi-
ple brain regions can be performed amazingly quickly. 
Humans can process complex natural images and relate 
them to the visual world within 150 to 200 ms (Thorpe 
and others 1996), and monkeys can make a decision in a 
color-discrimination task even within 30 ms (Stanford 
and others 2010). Because such tasks involve multiple-
stage processing in polysynaptic circuits, the high perfor-
mance speed implies fast communication between the 
involved ensembles.

Thus, experimental data provide clear evidence for 
fast responses in vivo. Moreover, the speed of perception 
and performance in some specific cognitive tasks shows 
that abilities of neuronal ensembles to communicate fast 
are indeed exploited by the brain.

Cellular and Network Mechanisms 
That Affect the Speed of Neuronal 
Computations

Ideal Encoders and Spike Onset: Insights from 
Neuron Models

Theoretical work showed that a population of the most 
simple model neurons, leaky integrate and fire (LIF) neu-
rons (Tuckwell 1998), can faithfully transfer arbitrary fre-
quencies, which are present in their membrane potential 
fluctuations, into changes of the firing rate (Brunel and 
others 2001; Knight 1972a, 1972b; Lindner and 
Schimansky-Geier 2001; Naundorf and others 2005). In 
response to a small step-like change of the mean or vari-
ance of the input current, populations of such neurons can 
instantaneously alter their firing rate (Brunel and others 
2001). Therefore populations of such neurons have been 
called “ideal encoders” (Knight 1972a). For faithful encod-
ing of arbitrary input signals by ideal encoders only two 
requirements have to be fulfilled: signals should be pre-
sented on background of correlated (non-white, or filtered) 
noise, and neurons of the population should fire irregular 
spontaneous spikes. Considered in isolation, spontaneous 
firing and background “noise”, unrelated to the stimulus 
under study consume energy and are thus subject to energy 
constraint. However, in the whole brain background 
“noise” activity may originate naturally because of the fea-
tures of constructing elements (Faisal and others 2008), 
and/or be a by-product of other ongoing processes, such as 
parallel processing of multiple factors in the network, and 
thus come with no or little additional energy costs.

Ideal encoders, such as LIF model neurons, are 
equipped with an instantaneous spike generation mecha-
nism, while in real neurons action potentials have finite 
onset dynamics, determined by the activation kinetics of 
sodium channels (Hodgkin and Huxley 1952a, 1952b; 
Hodgkin and others 1952). Implementing spike generators 
with finite onset dynamics, that takes into account the 
activation kinetics of sodium channels in conductance-
based neuron models, fundamentally changes encoding 
properties of populations of such neuron models. With 
increasing time scale of spike generation, the time scale of 
spike responses slows down (Fourcaud-Trocme and oth-
ers 2003), and the ability of neurons to phase-lock their 
firing to frequencies f higher than the firing rate of indi-
vidual neurons is attenuated proportionally to 1/f, thus 
limiting the reliably encoded range of frequencies 
(Fourcaud-Trocme and Brunel 2005; Fourcaud-Trocme 
and others 2003; Naundorf and others 2005).

These theoretical results have two important implica-
tions. First, they identify properties of neuronal spike 
generators, specifically onset dynamics of action poten-
tials, as one of the major determinants of encoding in 
neuronal networks. Second, because cortical neurons 
generate APs with finite onset dynamics, they are not 
ideal encoders, and their transfer function has a finite cut-
off. Hence those factors which influence the cutoff fre-
quency of neuron models with finite-scale spike onset, 
such as their firing rate or spike onset dynamics, might 
influence the frequency composition of signals encoded 
by cortical ensembles. This poses a number of questions 
that are fundamental for understanding encoding and 
speed of spike responses and neuronal computation. How 
are APs generated in cortical neurons, and what mecha-
nisms underlie their fast onset, necessary to support 
encoding of high frequencies and fast spike responses? 
Which factors determine the frequency composition of 
signals encoded in spiking of cortical neurons? How does 
interaction of different factors determine the abilities of 
neuronal populations for high-frequency encoding, fast 
responses and high speed of computation?

Distal Initiation of Action Potentials in Cortical 
Neurons

In neocortical neurons, action potentials are initiated in 
the axon initial segment, about 30 to 50 µm away from 
the soma (Baranauskas and others 2013; Fleidervish and 
others 2010; Kole and Stuart 2012; Palmer and Stuart 
2006; Stuart and others 1997; Stuart and Sakmann 1994). 
Shifting spike initiation into the axon initial segment 
brings about several advantages, such as a certain degree 
of isolation of the spike initiation site from the large 
capacitance of the soma and smaller local capacitance 
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thus allowing a faster time constant; small surface of the 
initiation zone, which makes maintenance of higher chan-
nel density, generation of high-density currents, and res-
toration of ionic gradients after the spike less energetically 
expensive; and increasing fidelity of action potential 
propagation down the axon.

Modeling: Encoding Depends on the Dynamics 
of the Action Potential at the Initiation Site

With action potentials initiated in the axon initial segment 
(AIS), does the transfer function depend on spike onset 
dynamics, as prior theoretical analysis had shown for 
single-compartment models? And if yes, is encoding 
determined by the dynamics of spike initiation in the AIS, 
or by the onset of somatic spikes? Figure 5A shows action 
potentials at the initiation site in the AIS and in the soma 
for four multicompartment neuron models with realistic 
structure of the initial portion of the axon (see Baranauskas 
and others 2010; Ilin and others 2013 for model details). 
In all four models, spike initiation zone was in the distal 

part of the axon initial segment, 30 to 50 µm from the 
soma. The four models differed by the composition and 
kinetics of sodium channels at the spike initiation zone. 
In the first two models (HH) all sodium channels were 
Hodgkin-Huxley type. The first model had a moderate 
density of Hodgkin-Huxley type sodium channels (pro-
ducing peak sodium current of 2,000 pS/µm2), and the 
second model had very high density of the same channels 
(peak current 20,000 pS/µm2) at the spike initiation zone. 
In addition, the second model had an increased axial 
resistance in the axon. This combination of extreme 
parameters was necessary (Baranauskas and others 2010) 
to achieve fast onset of AP in the soma despite a slow, 
Hodgkin-Huxley type onset at the initiation zone, as sug-
gested by the “invasion scenario” (Yu and others 2008). 
The third and fourth models had moderate density of 
sodium channels at the initiation zone (2,000 pS/µm2). A 
small portion (10%) of these channels expressed either 
cooperative activation (Coop in AIS) or threshold activa-
tion (Threshold in AIS). Remaining sodium channels in 
the AIS and all sodium channels in other compartments 

Figure 5. Spike generation and frequency response function of multicompartment neuron models. (A) Action potentials in the 
soma and at the site of initiation in the axon initial segment (AIS) in four multicompartment models, and phase plots of the initial 
portions of these action potentials (APs). Black oblique arrows point at the sharp kink at AP onset. Note that in both models 
with Hodgkin-Huxley channels, AP onset is slow at the initiation site in the AIS, but becomes fast in the soma of the model with 
high density of sodium channels and increased Rax (magenta traces). In two other models, with a fraction of cooperative or 
threshold channels in the distal AIS, AP onset is fast both at the initiation site and in the soma. (B) Frequency response functions 
of the four models from A. Note the difference between the models in the ability to encode high frequencies. For comparison, 
gray line with error bars shows transfer function of layer 5 pyramidal neurons from Figure 4. All four models had the same 
morphology, with detailed structure of the axon initial segment and simple morphology of the dendrites (Baranauskas and others 
2010), and same passive properties and Hodgkin-Huxley type potassium and sodium channels in the axon, soma and dendrites 
(Ilin and others 2013). The models differed in the channel composition in the initial segment. In the first two models (HH), the 
distal portion of the axon initial segment (30-50 µm from the soma) had a moderate (lilac traces, 2,000 pS/µm2) or very high 
(magenta traces, 20,000 pS/µm2) density of Hodgkin-Huxley type sodium channels. In the second model axial resistance in the 
axon was increased (Rax = 300 ohm cm compared with Rax = 150 ohm cm in other models). This combination of extreme 
values was necessary to achieve fast onset of AP in the soma, despite a slow, Hodgkin-Huxley type onset at the initiation zone in 
the distal initial segment (Baranauskas and others 2010). The distal AIS of the third model (Coop in AIS) had moderate density of 
sodium channels (2,000 pS/µm2), a small portion of which (10%) expressed cooperative activation (Naundorf and others 2006). 
Remaining sodium channels in the AIS and in other compartments were Hodgkin-Huxley type. In the distal AIS of the fourth 
model (Threshold in AIS), 10% of sodium channels expressed threshold activation. Details of model parameters are given in Ilin 
and others (2013), models 2, 6, 7, and 8 from Figure 3. Modified from Ilin and others (2013).
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were Hodgkin-Huxley type. Onset dynamics of spikes in 
the AIS was clearly different in the four models: slow in 
the models with moderate or high density of HH chan-
nels, fast in the model with a portion of cooperative chan-
nels in the AIS, and yet faster, essentially instantaneous, 
in the model with a portion of threshold channels. 
Importantly, somatic spikes had slow onset in the first 
HH model, but expressed fast onset with a characteristic 
kink at the origin in the remaining three models. 
Comparison of transfer functions measured in the four 
models allows us to draw the following conclusions. In 
models with spike initiation in the AIS, the ability to 
encode high-frequencies depends on onset dynamics of 
action potentials (Fig. 5B), similar to the dependence 
described in point-process simulations. Model neurons 
with a small portion of threshold channels in the AIS, ini-
tiating spikes almost instantaneously, do not express 
high-frequency cutoff, much like the ideal encoders. In 
contrast, model neurons with Hodgkin-Huxley channels 
in the AIS have clear attenuation of encoding of high fre-
quencies. Importantly, encoding of high frequencies was 
poor in both HH models, despite the fast onset of somatic 
spikes achieved by extremely high density of sodium 
channels, as required by the invasion scenario (Yu and 
others 2008). Thus, onset dynamics of spikes at the site of 
initiation, but not in the soma, is determining the encod-
ing properties of neurons. These conclusions are further 
substantiated by encoding properties measured in model 
neurons with a small portion of cooperative channels in 
the AIS. In this model, dynamics of spike initiation was 
intermediate between Hodgkin-Huxley and threshold 
models, and so was the transfer function: better encoding 
of high frequencies than in Hodgkin-Huxley models, but 
with a clear high frequency cutoff unlike the threshold 
model. Notably, compared with other models, the model 
with 10% cooperative channels in AIS had transfer func-
tion in high frequency range (above ~100 Hz) that resem-
bled most closely the transfer function measured in layer 
5 pyramidal cells (Fig. 5B).

This analysis identifies onset dynamics of action 
potentials at the initiation zone, governed by the kinetics 
of sodium channel activation, as a major factor determin-
ing encoding properties of neurons.

Encoding in Neurons Depends on Action 
Potential Onset Dynamics

Does the dependence of encoding of high frequencies and 
response speed on AP onset hold for cortical neurons? 
Onset dynamics of spikes in cortical neurons can be 
slowed down by application of low concentration of TTX 
in the recording chamber (Naundorf and others 2006) or 
locally to the axon initial segment (Ilin and others 2013; 
Kole and Stuart 2008), or by lowering extracellular 

sodium concentration, substituting a portion of sodium 
ions with choline (Ilin and others 2013). Figure 6 shows 
that in low extracellular [Na+] both the onset of action 
potentials is slowed down, and encoding of high frequen-
cies is impaired. The impairment of encoding of high fre-
quencies was clear when measured in individual neurons 
in control conditions and after application of low-sodium 
solution (Fig. 6A and B), and it was significant for the 
whole sample: transfer factors for frequencies >65 Hz 
were significantly lower in low sodium than in control 
(Fig. 6C). Moreover, slowing down of AP onset dynamics 
was associated with decreased speed of responses to input 
steps (Fig. 6D). For a given size of a population of trans-
mitting neurons, detection of the step-induced changes in 
population firing rate by the theoretical decoder took 
about twice as long in low sodium solution than in control 
(Fig. 6E). Because detection time depends on the number 
of transmitting neurons the effect of slower spike genera-
tion could be compensated by increasing the size of the 
transmitting population. In Figure 6E example, achieving 
same detection times with neurons with slower spike 
onset would require a five- to sixfold increase of the pop-
ulation size as compared to cortical neurons in control, 
with undisturbed spike onset.

Thus, the ability of cortical neurons to change their 
firing rate rapidly in response to input perturbations criti-
cally depends on the onset dynamics of action potentials. 
Slowing down the onset dynamics of spikes by experi-
mental manipulations leads to a decrease of the response 
speed. These results provide experimental proof for the 
theoretically predicted dependence of encoding on the 
dynamics of spike initiation (Fourcaud-Trocme and oth-
ers 2003; Huang and others 2012; Naundorf and others 
2005; Wei and Wolf 2011). Moreover, in combination 
with results of encoding in multicompartmental models 
with distal spike initiation these results support the notion 
that fast onset dynamics is a genuine property of cortical 
spike generators (Naundorf and others 2006): Encoding 
depends on action potential onset at the initiation site, and 
cortical neurons are able to encode higher frequencies 
than models in which fast onset of somatic spikes is pro-
duced solely by invasion of lateral current as suggested 
by (Yu and others 2008).

Other Factors That Influence Encoding

In addition to onset dynamics of AP initiation, three 
groups of factors influence encoding in neuronal popula-
tions and their response speed.

The first group includes properties of the input signal: 
propagation time along presynaptic axons and input 
amplitude. Increasing the propagation speed by increas-
ing axon diameter and myelinization is a common strat-
egy in the nervous system, especially for transmission 
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over longer distances. For short-distance communication 
this factor is subject to strict structural and energy con-
straints (see Faisal and others 2005 for review). The input 
amplitude influences response speed too: with other con-
ditions equal, stronger inputs are detected faster (Fig. 
7A). As discussed above, the higher amplitude of the 
input can be due to large amplitude of unitary EPSPs, or 
result from synchronization of activity in several presyn-
aptic fibers.

The second group includes factors that govern integra-
tion of inputs, and ultimately determine the input-driven 
current and membrane potential changes at the site of 
spike initiation. Although the variety of processes 
involved in translation of synaptic conductances at the 
dendrites into changes of the membrane potential at the 

site of action potential initiation is beyond the scope of 
this review, few points are worth mentioning. Of clear 
relevance for encoding is the shortening of the effective 
time constant, either by decreasing membrane resistance 
in high conductance state (Destexhe and others 2003), or 
by decreasing local capacitance at the spike initiation 
zone by shifting it into the axon, which results in partial 
isolation of the initiation zone from the large capacitance 
of the soma (Baranauskas and others 2013; Ma and 
Huguenard 2013). The isolation from the soma might be 
especially strong when the axon originates from a den-
drite (Hausser and others 1995; Martina and others 2000; 
Thome and others 2014). An unexpected aspect of cross-
talk between properties of the dendritic tree and encoding 
is reported in a recent computational study: increasing the 

Figure 6. Artificial slowing down of action potential (AP) onset impairs encoding of high frequencies and decreases the speed 
of population firing rate response. (A1): Responses of a neocortical neuron to injection of the same fluctuating current (bottom 
trace, black) in control conditions (red) and in reduced extracellular [Na+] (blue). Recordings are from the soma. (A2) AP 
waveforms, phase-plots, and zoom-in of initial portion of APs in phase plots illustrate slower onset of APs in low extracellular 
[Na+] relative to control. (B) Frequency response functions of the neuron from A recorded in control conditions (red) and 
then in low [Na+] (blue). Transfer functions were cut at intersection with respective 95th percentile of N = 500 transfer 
functions obtained with shuffled AP timings (gray; see Ilin and others 2013 for details). (C) Averaged frequency response 
functions measured in control conditions (red; N = 18 neurons) and in low [Na+] (blue; N = 7). Transfer functions were cut at 
respective 95th percentiles (pale color lines). The bar below the plot shows high frequency range in which encoding in low [Na+] 
experiments is significantly impaired (**P < .01) relative to control. (D) Changes of population firing rate in response to the 
onset and offset of small current steps immersed in fluctuating current (bottom), in control conditions (red) and in the medium 
with reduced extracellular [Na+], which leads to slower AP onset dynamics (blue). Each peristimulus time histogram (PSTH) was 
calculated using N = 9100 responses. Vertical bars above the onset and offset of steps in histograms show averaged AP duration. 
(E) Probability of step detection vs. time after step onset, for populations of N = 100, 500, or 3000 neurons. Note that for same-
size populations detection time in low [Na+] is about twice as long as in control. Modified from Ilin and others (2013).
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size of the dendritic tree (and thus its impedance load) 
leads to faster onset of spikes in the axon initial segment 
and improved encoding of high frequencies (Eyal and 
others 2014). Better encoding of high frequencies by 
layer 5 pyramids than by layer 2/3 pyramids (Figure 4) is 
consistent with these theoretical results.

The third group includes network factors: the size of 
the population of transmitting neurons and their firing 
rate. Increasing the number of neurons that receive a 
common signal and provide input to the theoretical 
decoder improves signal detection and makes it faster 
(Figs. 3D and 6E). Theoretical analysis predicted that 
increasing the firing rate of neurons in the encoding pop-
ulation shifts the cutoff frequency of the transfer function 
toward higher frequencies, thus improving the encoding 
of fast-changing signals (Naundorf and others 2005). 
Recent experimental results (Ilin and others 2014) con-
firm this prediction: with averaged firing rate of neurons 
increasing from 1 to 5 Hz and to 10 Hz, small artificial 
EPSCs were detected progressively faster (Fig. 7B). Note 
that the two network factors are directly related to energy 
expenditure, and thus subject to energy consumption and 
structural constraints.

To summarize, results of theoretical and experimental 
analysis of spike encoding have identified the following 
requirements for high-speed communication between 
neurons, and factors which affect this speed. Achieving a 
high speed of the spike responses requires population 
encoding and background “noise” activity that produces 
spontaneous firing in the encoding population. A critical 
factor that determines the response speed is the onset 
dynamics of action potentials: populations of neurons 
with fast AP onsets change their firing rate in response to 
input perturbations faster than neurons generating slow-
onset spikes. Increasing the size of the population of 

encoding neurons and their firing rate decreases the time 
necessary for detecting a change in population firing. 
Detection time can be also decreased by increasing the 
signal amplitude, for example by increasing input syn-
chrony. These dependences, initially predicted theoreti-
cally (Brunel and others 2001; Fourcaud-Trocme and 
Brunel 2005; Fourcaud-Trocme and others 2003; Huang 
and others 2012; Naundorf and others 2005; Wei and 
Wolf 2011), have now been supported by experimental 
evidence from neocortical neurons (Boucsein and others 
2009; Higgs and Spain 2011; Ilin and others 2013; Ilin 
and others 2014; Kondgen and others 2008; 
Tchumatchenko and others 2011).

Outlook: Interplay of Factors 
Influencing Encoding

The fact that response speed of neuronal populations 
depends on multiple factors (Fig. 8A) suggests several 
strategies for speeding-up neuronal responses and pro-
cessing in neuronal networks. For example, one way to 
accelerate processing is to increase signal amplitude. This 
could be achieved on a short time scale by increasing syn-
chrony of presynaptic activation, but also on the long 
time scale by long-term potentiation of synaptic transmis-
sion. Another way to speed-up processing would be to 
increase the size of populations involved in encoding, 
either short term within the limits of existing connectiv-
ity, or long term by establishing new connections. 
Immediate increase of response speed can be achieved 
also by increasing the firing rate of neurons. With these 
strategies, processing speed can be increased selectively 
in neuronal ensembles involved in a specific task or pro-
cessing of specific types of signals. A drawback of the 
above strategies is that increase of processing speed 

Figure 7. Dependence of detection time and probability on the signal amplitude and the firing rate. (A, B) Probability of 
detection of artificial excitatory postsynaptic current (EPSC) versus time after the artificial EPSC (aEPSC) onset for population of 
N = 1000 neurons, for different amplitudes of aEPSCs (A, mean firing rate 5 Hz) and different firing rate of transmitting neurons 
(B, aEPSC amplitude 50 pA), as indicated. Data from one layer 2/3 pyramidal neuron (Ilin, Stevenson, Volgushev, unpublished).
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comes with an increase of energy consumption and/or 
additional morphological structures, and thus is subject to 
respective constraints. A strategy allowing a general 
increase of processing speed in neuronal networks is 
acceleration of the onset dynamics of action potential 
generation. This strategy has several advantages. First, 
higher processing speed is not associated with additional 
energy or structural costs. Second, a general increase of 
processing speed in the whole network does not disturb 
temporal relations between processing in different parts 
of the networks, and thus does not disrupt temporal orga-
nization of neuronal activity. Rather, the ability of neu-
rons to encode high frequency stimuli and generate 
high-precision spike patterns expands the possibilities for 
precise coordination of neuronal activity and for the use 
of temporal coding. Finally, this strategy preserves the 
dynamic range of regulation of processing speed with the 
use of other, energy-expensive strategies, which could be 
employed in selective fine-tuning of processing.

The variety of means for increasing processing speed 
allows for a certain degree of trade-off between them. 
The use of a cost-neutral speeding-up of processing by 
accelerating onset dynamics of spike generation may 
allow to limit the use of other factors, which are 

associated with increased energy demands, and thus 
achieve high processing speed without the explosion of 
energy consumption. An illustrative example from Figure 
6E shows that ability of neocortical neurons to generate 
fast-onset spikes allows neuronal systems to achieve the 
same processing speed with population sizes ~5-6 times 
smaller as compared to populations of neurons with a 
slow spike onset. This does not preclude, however, the 
use of energy-expensive strategies. For example, increase 
of the firing rate and/or number of neurons involved 
allows for a dynamic, “on-demand” speeding-up of pro-
cessing, such as for in-depth analysis of a specific portion 
of environment highlighted by attentional spotlight, or in 
context-dependent processing.

The influence of the above factors on detection prob-
ability curves (Figure 8A) can be considered from two 
perspectives. One is focused on changes of detection 
time. From this perspective, the outcome of potentiation 
of synaptic transmission or an increase of the firing rate 
of neurons is a decrease of time required for detecting a 
signal with a preset probability p (Fig. 8B). Another per-
spective is focused on changes of detection probability. 
From this perspective, potentiation or higher firing rate 
lead to an increase of the probability with which the 

Figure 8. Factors influencing response speed of neuronal populations. (A) Schematic representation of the influence of different 
factors on detection. Multiple factors listed on the right are pushing the detection curve in the same direction, as indicated by the 
arrows. (B, C) Two perspectives on comparison of detection curves. One perspective (B) is focused on detection time: steeper 
detection curve means that less time is required to reach a preset probability p of signal detection. Another perspective (C) is 
focused on detection probability: Steeper detection curve means an increase of the probability with which the signal will influence 
neuron’s output within a preset time interval t.
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signal will be able to influence neurons’ output within a 
given time interval t (Fig. 8C). Redistribution of synaptic 
weights as a result of plasticity, or dynamic changes of 
firing rates of neuronal ensembles will then lead to redis-
tribution of the probabilities with which different inputs 
influence neurons’ spiking pattern, and thus the message 
sent by this neuron (or ensemble of neurons) for further 
processing. The probability-oriented perspective applies 
for understanding processing in neuronal networks sub-
ject to time-constraints, which can be imposed, for exam-
ple, by rhythmic activity. In this case, the rhythm sets the 
intervals during which neurons can generate spikes. 
Inputs communicated via stronger synapses, or by neu-
rons firing at higher rates, will have higher probability to 
influence the neurons’ output spiking. The resulting 
spread of activity and the constellation of activated neu-
rons will then reflect most probable, though not the only 
possible, outcome of processing.

Open Questions

Modern techniques have allowed remarkable advances in 
mapping neuronal connectivity and revealing morpho-
logical and biochemical diversity of neurons. However, 
understanding how this connectivity is used, and how 
neuronal networks process information and mediate 
behavior, is impossible without knowledge of computa-
tional properties of neurons and neuronal populations. 
Recent progress in theoretical and experimental analyses 
of neuronal encoding has brought about novel insights 
onto computational abilities of neurons, and their depen-
dence on details of neuronal morphology, electrophysiol-
ogy, and the state of network in which these neurons are 
embedded. It also highlighted several groups of unre-
solved questions that are crucial for further progress.

How are APs initiated in cortical neurons? What are 
mechanisms of fast onset dynamics of cortical APs? So 
far, there is no consensus model of AP generation in cen-
tral neurons which is compatible with all existing pieces 
of experimental evidence: kinetics of channels and their 
distribution in the axon initial segment, onset dynamics 
of APs, and encoding properties of cortical neurons, 
including the high cutoff frequency of their transfer 
function.

How different are encoding properties of neurons of 
different types? What are between-type differences and 
within-type variability of encoding properties of neu-
rons? Answering these questions will help to understand 
differential roles played by neurons of different types in 
cortical computations, and how specific encoding proper-
ties allow neurons to serve these roles.

How big are neuronal ensembles mediating behaviors? 
Can the number of participating neurons be increased to 
transmit information faster and decrease response time? 

For example, are faster responses in a known context 
mediated by increasing the number of involved neurons 
and/or their averaged firing rate? Answering these ques-
tions will help to understand whether and how abilities of 
neurons for fast communication are used in the brain and 
how they are dynamically regulated.
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